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Principal Component Analysis  on images 
learning objectives
 Construct a column matrix from a single gray scale image
 Construct a data matrix from a set of gray scale images
 Compute and visualize an average image from a set of images
 Compute the principal components of a set of images
 Visualize the principal components computed from a set of 

images
 Synthesize an image by combining the average image and a 

linear combination of principal components
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Face data
 38 face images

– 168 x 192 grayscale
 Aligned

– The anatomy is placed ”in the 
same position in all image”

 Same illumination conditions 
on the images we use

The Extended Yale Face Database B
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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Principal component analysis on face images
 What is the main variation in face 

images?
– The variation of appearance

– Not the position in the image
– Not the light conditions
– Not the direction of the head
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Putting images into matrices
 An image can be made 

into a column matrix
– Stack all image columns 

into one column

I=

𝑝𝑝1
𝑝𝑝2
…
𝑝𝑝𝑚𝑚

…
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Face images in matrix form
 One column is one face
 n=38 faces
 m=168x192 = 32256 pixel values per image

X=
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛
⋮ ⋱ ⋮

𝑝𝑝𝑚𝑚,1 ⋯ 𝑝𝑝𝑚𝑚,𝑛𝑛
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The average face
 The average face

– Average of each row
– One column
– Put it back into image shape

 Blurry around the eyes
– Not perfectly aligned

X=
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛
⋮ ⋱ ⋮

𝑝𝑝𝑚𝑚,1 ⋯ 𝑝𝑝𝑚𝑚,𝑛𝑛
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Subtracting the mean face
 We subtract the 

mean face from all 
faces

X′ =
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛
⋮ ⋱ ⋮

𝑝𝑝𝑚𝑚,1 ⋯ 𝑝𝑝𝑚𝑚,𝑛𝑛

− �𝑋𝑋
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Analyzing the deviation from the mean face
 We want to do the principal component analysis 

on the deviations from the average face
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PCA Analysis on face data
 We do the PCA analysis on 

the X’ matrix
 X’ is 32256 x 38 
 Standard covariance matrix 

is 32256 x 32256
 Turk and Pentland found a 

trick:
– Compute the PCA on the 38 x 

38 matrix instead of the 
32256x32256 matrix

– Details in the paper
 Beyond the scope here

X′ =
𝑝𝑝1,1 ⋯ 𝑝𝑝1,𝑛𝑛
⋮ ⋱ ⋮

𝑝𝑝𝑚𝑚,1 ⋯ 𝑝𝑝𝑚𝑚,𝑛𝑛

− �𝑋𝑋
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PCA on faces
 First eigenvector 

explains 40% of 
variation

 Second eigenvector 
explains 8% of 
variation
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Visualizing the PCA faces
Main deviations from the average face

First PC – 40% of variation

Second PC – 8% of variation

Average face-PC +PC

A tool to see major variations –
brow lifting
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Synthesizing faces
 A new face can be created by combining

– Average face
– Linear combination of principal components

+ 0.05 - 0.12

Average face PC1 PC2

=
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Decomposing faces
 A given face can be reconstructed using

– The average face
– Linear combination of principal components

 Found by projecting the face on the principal 
components

 The weights can then be used for 
classification/identification

+𝑤𝑤1 +𝑤𝑤2

Average face PC1 PC2

≅
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Face analysis plus plus?
More examples later in the course
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