Principal component analysis on images

Rasmus R. Paulsen

DTU Compute

Based on

M. Turk and A. Pentland. Face recognition using eigenfaces. Computer Vision and Pattern Recognition, 1991.
http://compute.dtu.dk/courses/02502

Principal Component Analysis on images learning objectives

- Construct a column matrix from a single gray scale image
- Construct a data matrix from a set of gray scale images
- Compute and visualize an average image from a set of images
- Compute the principal components of a set of images
- Visualize the principal components computed from a set of images
- Synthesize an image by combining the average image and a linear combination of principal components

Face data

- 38 face images
- 168×192 grayscale
- Aligned
- The anatomy is placed "in the same position in all image"
- Same illumination conditions on the images we use

```
The Extended Yale Face Database B http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
```


Principal component analysis on face images

- What is the main variation in face images?
- The variation of appearance
- Not the position in the image
- Not the light conditions
- Not the direction of the head

Putting images into matrices

- An image can be made into a column matrix
- Stack all image columns into one column

$$
\mathrm{I}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{m}
\end{array}\right]
$$

Face images in matrix form

- One column is one face
- n=38 faces
- m=168×192 = 32256 pixel values per image

The average face

- The average face
- Average of each row
- One column
- Put it back into image shape
- Blurry around the eyes
- Not perfectly aligned

Subtracting the mean face

$\mathrm{X}^{\prime}=\left[\begin{array}{ccc}p_{1,1} & \cdots & p_{1, n} \\ \vdots & \ddots & \vdots \\ p_{m, 1} & \cdots & p_{m, n}\end{array}\right]-\bar{X}$

- We subtract the mean face from all faces

Analyzing the deviation from the mean face

- We want to do the principal component analysis on the deviations from the average face

PCA Analysis on face data

$\mathrm{X}^{\prime}=\left[\begin{array}{ccc}p_{1,1} & \cdots & p_{1, n} \\ \vdots & \ddots & \vdots \\ p_{m, 1} & \cdots & p_{m, n}\end{array}\right]-\bar{X}$

- We do the PCA analysis on the X^{\prime} matrix
- X^{\prime} is 32256×38
- Standard covariance matrix is 32256×32256
- Turk and Pentland found a trick:
- Compute the PCA on the 38 x 38 matrix instead of the 32256x32256 matrix
- Details in the paper
- Beyond the scope here

PCA on faces

- First eigenvector explains 40\% of variation
- Second eigenvector explains 8% of variation

Visualizing the PCA faces

Main deviations from the average face

First PC - 40\% of variation

Second PC - 8\% of variation

A tool to see major variations brow lifting

Synthesizing faces

- A new face can be created by combining
- Average face
- Linear combination of principal components

Decomposing faces

- A given face can be reconstructed using
- The average face
- Linear combination of principal components
- Found by projecting the face on the principal components
- The weights can then be used for classification/identification
(8) (o)

Face analysis plus plus?

- More examples later in the course


```
generate faces by adjusting sliders [1]-[6]
```


